Филиал «угреша» Б. М. Балоян, А. Г. Колмаков, М. И. Алымов, А. М. Кротов наноматериалы классификация, особенности свойств, применение и технологии получения. Москва 2007

Главная страница
Контакты

    Главная страница



Филиал «угреша» Б. М. Балоян, А. Г. Колмаков, М. И. Алымов, А. М. Кротов наноматериалы классификация, особенности свойств, применение и технологии получения. Москва 2007



страница15/32
Дата19.08.2017
Размер6.21 Mb.
ТипУчебное пособие


1   ...   11   12   13   14   15   16   17   18   ...   32
Методы формовки

В порошковой металлургии в настоящее время применяются множество технологий формовки. Для прессования нанопорошков наиболее широкое распространение получила технология одноосного прессования. Используются такие его методы как: статическое (прессование в пресс-формах или штамповка), динамическое (магнитно-импульсное и взрывное) и вибрационное (ультразвуковое) прессование [7]. Указанные виды прессования достаточно известны, повсеместно используются при формовке обычных порошков и достаточно широко освещены в литературе, например в [56,60].

Для получения высокоплотных формовок используется прессование, при котором условия сжатия материала близки к всестороннему. Эта технология получила название изостатического прессования. Существует несколько его вариантов: гидростатическое, газостатическое, квазигидростатическое. При изостатическом прессование порошка его помещают в эластичную или деформируемую оболочку. Получаемые формовки отличаются практически однородной плотностью (правда иногда во внутренних объемах формовки она несколько меньше) и не имеют выраженной анизотропии свойств. Недостатком является достаточная сложность и дороговизна оборудования и сложность выдерживания точности размеров формовки [60].



Гидростатическое прессование проводят при использовании резиновых или других эластичных оболочек толщиной 0,1-2 мм. Оболочку с порошком помещают в рабочую камеру гидростата и нагнетают туда жидкость (масло, вода, глицерин и др.) под высоким давлением (от 100 до 1200 МПа). Получаемые формовки могут иметь сложную форму

Газостатическое прессование проводят при использовании металлических оболочек (капсул) из алюминия или пластичных сталей. Форма оболочек – простая, максимально приближенная к готовым изделиям. Часто газостатическому прессованию подвергают уже полученную ранее другими методами заготовку. Металлическую капсулу помещают в газостат, в рабочей камере которого создают давление до 200…300 МПа [60].

Квазигидростатическое прессование является упрощенным вариантом гидростатического прессования. Порошок помещают в эластичные оболочки, прессование которых проводят при одностороннем или двустороннем приложении давления в обычном прессовом оборудовании.. Материал оболочки (резиновая масса, эпоксидные смолы и т.д.) должен под давлением вести себя подобно жидкости, иметь определенную упругость и не склеиваться с порошком.

Успешно начал использоваться в последнее время и метод интенсивной пластического деформирования – кручение под давлением. В отдельных случаях для получения лент применяют прокатку.



Методы спекания

Спекание формовок из нанопорошка ограничено невозможностью использовать высокие температуры. Повышение температуры спекания приводит к уменьшению пористости, но с другой стороны ведет и к росту зерна. Эту проблему решают рядом методов активации, позволяющих добиваться получения низкой пористости изделий при более низких температурах спекания [7,86-88]:

  • применение высокоскоростного микроволнового нагрева (при увеличении скорости нагрева с 10 до 300 град/мин необходимая температура спекания нанопорошка TiО2 снижается с 1050 до 975 оС [7]);

  • ступенчатое контролируемое спекание;

  • плазмоактивированное спекание.

  • проведение спекания в вакууме или восстановительных средах (для металлических порошков)


Методы спекания под давлением

Совмещение процессов формования и спекания или проведение спекания под давлением позволяет достигать больших значений плотности, в том числе и близких к теоретическому значению при использовании меньших температур нагрева. Наиболее простой способ – спекание при одноосном приложении давления. Так по данным [7] при проведении спекания нанопорошка железа под давлением прессования до 400 МПа температура спекания, при которой отсутствует пористость, снижается с 700 до 350 оС, а размер зерна изделий уменьшается с 1,2 мкм до 80 нм. Схема установки, разработанной в ИМЕТ РАН для спекания нанопорошков под давлением приведена на рис. 4.11. В случае металлических нанопорошков для активации процесс проводят в вакууме или восстановительной атмосфере.


Рис. 4.11. Схема установки, разработанной в ИМЕТ РАН для спекания нанопорошков под давлением: 1- вход инертного или реакционного газа, 2- формовка, 3- наковальня, 4- нагревательный элемент, 5- вывод газа, 6- рабочая камера, 7- термопара, 8- пуансон, 9- сильфон, 10- герметизирующая прокладка [7].


Более прогрессивным методом совмещения процессов формовки и спекания является горячее изостатическое прессование. Метод горячего изостатического прессования (ГИП) с использованием газостатов является универсальным и широко известен в практике порошковой металлургии [56,60]. В современных установках могут быть достигнуты давления до 300 МПа и температуры до 2000 оС. Металлические сварные капсулы для порошков изготавливают в этом случае из углеродистой или коррозионно-стойкой стали. Для простых изделий используются только стальные капсулы, а для изделий достаточно сложной формы – изготавливаемые по отдельной технологии специальные металлокерамические формы. На качество изделий влияют не только технологические параметры ГИП, но и качество изготовления капсул и процесс их заполнения порошком. Часто при заполнении порошком применяют виброуплотнение порошка, проводят дегазацию и тщательную герметизацию капсул [56]. В случае нанопорошков из-за их большой удельной поверхности и склонности к газонасыщению проведение дегазации особенно важно [7].

Более дешевым вариантом, заменяющим ГИП, является так называемый метод быстрого ненаправленного компактирования [56]. В этом процессе используется нагреваемая толстостенная цилиндрическая пресс-форма, которая после заполнения порошком подвергается одноосному сжатию под высоким давлением (до 900 МПа). При этом внешние стенки пресс-формы плотно прилегают к металлическому цилиндру соответствующих размеров, который препятствует деформации пресс-формы. В результате заполненный порошком внутренний объем, который имеет форму будущей детали, находится под квазиизостатическим давлением. Метод позволяет спрессовать металлический порошок почти до 100% плотности всего за несколько минут.



Метод высокотемпературной газовой экструзии заключается в получении формовки гидростатическим методом при комнатной температуре, ее термической обработке в среде водорода при относительно низкой температуре и последующем экструдировании при повышенной температуре [7,89]. Этот метод позволяет проводить компактирование порошков при кратковременном температурном воздействии и достаточно больших температурах. Например, компакты, полученные этим методом из никелевого нанопорошка, отличались высокими прочностными показателями при одновременных очень хороших показателях пластичности [89].

Метод эжекционного литья основан на добавление в порошок специальной связки (например, термопластичные полимеры типа полипропилена, полиэтилена или полистерола), которая обеспечивает малую вязкость порошковой смеси [74]. Порошковую смесь подвергают затем литью под давлением (аналогично литью под давлением металлов и пластмасс). После получения отливки проводят выжигание термопластических веществ, а затем уже спекание. Недостатки метода связаны со сложностью процесса удаления связующих при выгорании (изменение формы детали, процессы взаимодействия продуктов разложения термопластических веществ с материалом порошка, обеспечение свободного удаления смеси при выжигании. Поэтому этот метод ограниченно используется для получения небольших специальных деталей сложной формы с толщиной стенок менее 10 мм [74]. Вариантом метода является использование водной суспензии порошка [90]. Суспензию отливают в форму, а затем замораживают. Просушка заготовки осуществляется в замороженном виде, а затем проводят процесс спекания.
4.2. Методы с использованием аморфизации

Аморфные металлические сплавы являются новым перспективным классом материалов [91,92]. Аморфное состояние сплава характеризуется отсутствием дальнего порядка в расположении атомов упаковки. Такое состояние достигается сверхбыстрым охлаждением материала из газообразного, жидкого или ионизированного состояния. Существуют следующие методы полученя аморфных сплавов [92]:



  • высокоскоростное ионно-плазменное и термическое напыление материала на охлаждаемую жидким азотом подложку (позволяет получать слои толщиной до 5 мм);

  • химическое или электролитическое осаждение ионов металлов на подложку;

  • оплавление тонких поверхностных слоев деталей лазерным лучом;

  • Лазерная обработка смеси порошков при быстром отводе тпла от расплава;

  • закалка из жидкого состояния.

Последний метод в настоящее время наиболее отработан и исследован и является основным методом получения аморфных сплавов [74,91,92]. Производство лент, фольг и проволок (толщиной до 100 мкм и шириной до 200 мм) проводится по схеме подачи струю жидкого металла на вращающийся водоохлаждаемый барабан (как правило медный) с гладкой поверхностью (рис. 4.12.). Иногда используют также схему извлечения жидкого металла из ванны расплава быстро вращающимся водоохлаждаемым диском, погруженным вертикально торцом в расплав. Еще один способ заключается в расплавлении сплава токами высокой частоты, вытягивании и быстром охлаждении аморфной нити толщиной до 200 мкм жидкой средой [91]. В случае нанесения на нить перед охлаждением стеклообразного покрытия способ используют для получения стеклометаллических аморфных композиционных материалов.

Возможность получения аморфного состояния определяется химическим составом и скоростью охлаждения. Последняя обычно составляет 105-1010 оС/с [92]. С точки зрения выбора химического состава сплава существуют два подхода.


При первом подходе для получения аморфной структуры в состав сплавов вводят специальные легирующие элементы–аморфизаторы в количестве до 30 %. В качестве аморфизаторов обычно используют бор, углерод, кремний, азот и др. [92]. Другой подход связан с выбором сплавов имеющих определенную базовую эвтектику, которая образуется при взаимодействии ряда фаз-аморфизаторов [91]. Данные фазы легируют с целью понижения температуры плавления и подавления образования зародышей кристаллов при затвердевании сплава. Этот подход позволяет получать кроме микроизделий (лент, фольг, проволок) также и объемные материалы толщиной до 5-10 мм [7,91].

Аморфное состояние сплавов является метастабильным, поэтому после аморфизации часто проводят отжиг, в процессе которого частично происходит переход к более стабильному состоянию [92]. Однако метастабильность остается, и при нагреве до (0,4-0,65) Тпл материал переходит в кристаллическое состояние. В связи с этим наряду с аморфным большой интерес стал проявляться и к нанокристаллическому состоянию аморфизирующихся сплавов.


Рис. 4.12. Принципиальные схемы получения аморфных лент и проволок методом быстрого охлаждения: а) закалка на вращающемся барабане, б) экстракция расплава вращающимся барабаном, в) охлаждение тонкой струи расплава жидкостью.


В ряде случаев для получения аморфного состояния проводят предварительную обработку (например высокоскоростную закалку) заготовок, а такие заготовки часто называют «прекурсорами».

Для ряда объемно-аморфизирующихся сплавов, например для сплавов на основе железа, возможно получение нанокристаллической или аморфно-нанокристаллической структуры непосредственно при закалке расплава со скоростью охлаждения немного ниже критической скорости образования аморфного состояния [7]. Однако для большинства сплавов при таком подходе получается неоднородная, нестабильная структура. Поэтому для получения наноструктуры используется контролируемая кристаллизация сплавов из аморфного состояния при термообработке [93]. В качестве перспективы рассматривается получение нанокристаллической структуры путем инициации процессов кристаллизации в процессе деформирования аморфного материала.



1   ...   11   12   13   14   15   16   17   18   ...   32

  • Методы спекания