I условия образования газовых гидратов Влагосодержание природных газов

Главная страница
Контакты

    Главная страница


I условия образования газовых гидратов Влагосодержание природных газов



страница2/7
Дата08.04.2018
Размер1 Mb.


1   2   3   4   5   6   7

Равновесные параметры гидратообразования по константам равновесия при данных температуре и давлении рассчитывают следующим образом. Сначала находят константы для каждого компонента, а затем молярные доли компонента делят на найденную константу его равновесия и полученные значения складывают. Если сумма равна единице, система термодинамически равновесная, если больше единицы - существуют условия для образования гидратов, при сумме меньше единицы гидраты не могут образовываться.

II Места образования гидратов

Знать места возможного гидратообразования очень важно для своевременного их предупреждения.

Для правильного определения места образования гидратов необходимо знать состав газа, его плотность, изменения давления и температуры и влажность газа.

Зная влажность и состав подаваемого газа, а также зависимость этих параметров от давления и температуры, можно определить время начала образования гидратов, место и скорость накопления их в газопроводе.

Если точка росы лежит выше равновесной кривой гидратообразования, гидраты образуются в точке пересечения линии изменения температуры в газопроводе с кривой равновесной температуры гидратообразования. Если точка росы лежит ниже равновесной кривой, но выше минимума температурной кривой в газопроводе, гидраты образуются в точке росы. В условиях, когда точка росы лежит ниже равновесной кривой гидратообразования и ниже кривой изме­нения температуры в газопроводе, гидратообразование невозможно.

При создании условий гидратообразования на данном участке газопровода гидратная пробка быстро нарастает по мере поступления воды и гидратообразователя. При этом пары воды выделяются из газа, что снижает их упругость на определенную величину и ускоряет процесс образования локальной гидратной пробки.

Средняя объемная скорость накопления гидратов за время t может быть определена по формуле:

G = Q(Wн-Wк)/, ( 2.1 )

где Q - расход газа в тыс. м3; Wн - влагосодержание газа в равновесной точке гидратообразования в г/м3, Wк - влагосодержание газа после образования гидратов в г/м3;  - удельный объем гидратов в м3/кг;  - время образования гидратов в ч.

В газопроводе могут образовываться одна или несколько гидратных пробок.

В результате образования гидратов в газопроводе влагосодержание газового потока над гидратами снижается соответственно снижению упругости паров воды, находящихся в равновесия с жидкой фазой и твердым гидратом. Если в результате образования первой гидратной пробки точка росы паров воды снижается ниже минимума кривой изменения температуры газа в газопроводе, то следующая гидратная пробка может и не образоваться. Если в результате образования гидратной пробки за счет разности упругостей паров воды над жидкой водой и над гидратами точка росы не снижается ниже минимальной температуры в газопроводе, то образуется следующая гидратная пробка - в точке пересечения линии влагосодержания с кривой изменения температуры в газопроводе.

Гидраты образуются в следующих местах:

1. На штуцерах непосредственно после редуцирования газа при давлении примерно 6,5 МПа и температуре ниже 17 °С.

2. В обвязке, до сепараторов (при интенсивной теплоотдаче от газового потока к грунту).

3. В сепараторах (скорость потока на входных патрубках циклонных сепараторов достигает 120 м/с; давление в сепараторах значительно превышает равновесное давление гидратообразования). Часть гидратов потоком направляется в отстойную емкость. Здесь они уплотняются и частично или полностью закупоривают емкость, что приводит к резкому снижению эффективности работы сепараторов.

4. На диафрагме замерного участка. В застойных зонах до и после диафрагмы скапливаются ранее образующиеся и переносимые потоком газа гидраты. Гидратное кольцо равномерной толщины с незначительными углами скосов обнаруживали при вскрытии камер замерного участка.

5. В шлейфах - газопроводах, подключающих скважины к промысловому газосборному коллектору. Скопление гидратов наблюдается в непосредственной близости от диафрагмы замерного участка - в местах ответвлений (врезанные свечи, шлейфы). Гидраты в шлейфах образуются также на обратных клапанах, в местах установки задвижек, кранов и карманов для измерения температуры.

6. В промысловом газосборном коллекторе в местах резкого изменения скорости газового потока. Скопление их наблюдается в местах врезок шлейфов скважин в газосборныи коллектор, на запорной арматуре, на врезках дрипов и т. д. Гидраты могут также скапливаться и на прямолинейных участках газопроводов. В зависимости от скорости потока гидраты отлагаются в газопроводе в виде спирального кольца или в виде сегмента . Гидраты скопляются также и в объемных сепараторах.

7. На концевых линейных кранах. С одной стороны их действует рабочее давление газосборной сети, с другой - атмосферное. Под таким давлением уплотнительная смазка на пробках кранов и байпасов выдавливается, образуются пропуски газа с резким понижением температуры последнего. Корпус крана или байпас резко охлаждается и образуется застойная зона пониженной температуры. Пары воды, насыщающие газ, конденсируются, и начинается процесс кристаллизации гидратов. Постепенное накопление их приводит к полной закупорке сечения крана или обводного байпаса.



1 - газопровод; 2 - гидраты; 3 - импульсные трубки; 4 - диафрагма

Рисунок 2.1 - Схема накопления гидратов на замерной диафрагме




1 - газопровод; 2 - гидраты

Рисунок 2.2 - Схема заполнения гидратами горизонтальной трубы


Для правильного определения места образования гидратов и скорости их накопления в газопроводе необходимо знать состав, температуру, давление и влажность газа, а также их изменение по трассе. Это позволяет своевременно принять надлежащие меры.

При известном давлении в газопроводе по составу газа определяется равновесная температура гидратообразования tp. Затем определяется место образования гидратов в газопроводе при помощи уравнения:

=1/a*ln{( tн - t0 + I /a) / ( tр - t0 + I /a )}, (2.2)

где  - расстояние от точки газопровода с температурой tg до места образования гидратов, м; tн - начальная температура газа, °С; t0 - температура грунта на уровне газопровода, °C; tр - равновесная температура образования

гидратов, °С; I - средний эффект Джоуля - Томсона, отнесенный к единице длины газопровода, °С/м.

Эффект Джоуля - Томсона состоит в следующем. В заключенной в адиабатную оболочку трубке помещена пробка из ваты. По одну сторону пробки находится газ при давлении p1, по другую сторону пробки давление меньше и равно р2. Благодаря разности давлений газ будет медленно перетекать через пробку из одной части трубки в другую. Поместив термометры или термопары по обе стороны пробки, можно определить знак изменения температуры газа в опыте Джоуля - Томсона. Оказалось, что большинство газов при комнатной температуре охлаждается, лишь водород и гелий дают повышение температуры.

2.2 Образование гидратов в скважинах и способы их устранения

Образование гидратов в скважинах и промысловых газопроводах и выбор метода борьбы с ними в значительной степени зависят от пластовых температур, климатических условий и режима эксплуатации скважины.

Часто в стволе скважины имеются условия для образования гидратов, когда температура газа при его движении вверх от забоя до устья становится ниже температуры гидратообразования. В результате скважина забивается гидратами.

Изменение температуры в работающей скважине предпочтительней определять с помощью глубинных приборов. Если это не представляется возможным, применяют формулы:

t = tгр - tie- a(H- l)+{(1- е- а(Н- l))(Г- Di(pc- py)/ H- A/cp)/ a}; (2.3)

где t, tгр - соответственно температура потока и грунта на глубине l;

tгр = tпл - Г(Н - l); (2.4)

где tпл - температура пласта на глубине Н; Г - среднее значение геотермического градиента на участке Н - l; ti - изменение температуры в призабойной зоне за счет эффекта Джоуля-Томсона, °С;

ti= Di (pпл- pc) { lg (1+ (Gcp / hcпrc2 ))} / lg(rk /rc)  Di (pпл- pc); (2.5)

где rk - радиус контура питания скважины, м; rc - радиус скважины, м; Di - дифференциальный коэффициент Джоуля - Томсона, °С/МПа; pпл - давление в пласте, МПа; рс - давление на забое скважины, МПа; G - массовый расход газа, кг/с; Ср - теплоемкость газа при постоянном давлении; т - продолжительность работы скважины, с; h - вскрытая мощность пласта (интервал перфорации), м; сп - теплоемкость породы, Дж/м3.

а = (2п)/(Gcр f()), (2.6)

где п - теплопроводность горных пород, Дж/м с градус; f() - безразмерная функция.

f() = ln( 1+   п  / сп rc2 ), (2.7)
Величина геотермического градиента Г зависит от многих переменных; его надо рассчитывать по данным измерений температуры в скважинах, простаивающих длительное время. Температура газа в шлейфах может быть вычислена по формуле Шухова, справедливой для небольших перепадов давления,

tl = tср+ (t0 - tср) e - ( k D l / G cп ), (2.8)



где ti - температура потока в °C на расстоянии l от начала шлейфа, °С; tср - температура среды, в которой проложен шлейф, в °С; t0 - температура газа в начале шлейфа, °С; D - внутренний диаметр шлейфа; k - коэффициент теплопередачи, Дж/с м2 °С. По такой же формуле рассчитывается и коллектор. Вследствие снижения температуры газа при движении его по стволу скважины, в потоке всегда имеется конденсационная вода. Поэтому образование гидратов обусловлено только отношением давления и температуры.

1 - давление в скважине;

2 - равновесная температура гидратообразования;

3 - температура в скважине;

4 - глубина залегания нейтрального слоя

Рисунок 2.3 - Определение зоны возможного образования гидратов


По графику, изображенному на рисунке 2.3 можно определить место образования гидратов в скважинах. Аналогично можно установить и места образования их в шлейфах и коллекторах с той лишь разницей, что там надо выделить участки, на которых температура газа ниже точки росы, т. е. имеется капельная вода. Необходимые для расчетов по формулам величины Кд, Ср и т. д. берутся из справочников теплофизических величин.

На рисунке 2.3 виден характер изменения температуры по глубине скважины в процессе разработки одного из месторождений при различных коэффициентах теплопередачи К и следующих исходных данных: расход Q = 700 тыс.м3/сут; диаметр D = 0,2 м; глубина Н = 735 м; температура на забое tз = 19°С.

Анализ факторов, влияющих на изменение температуры по стволу скважин, показывает, что тепловой их режим в процессе разработки месторождения изменяется, и с уменьшением дебита для данного примера температура газа по стволу понижается (рисунок 2.4). Как видно из рисунка 2.5, путем регулирования дебита можно определить условия, исключающие образование гидратов. Изменение давления на устье ру, температуры газа на устье tу и равновесной температуры образования гидратов определяют в зависимости от дебита скважины при следующих исходных данных рз = 11,8 МПа; tпл = 32°С; tз = 31°С; D = 180 мм; p=0,56; К=22 Вт/м2* К); Г= 0,0277 °С/м.

Для рассматриваемых условий режим безгидратной эксплуатации в течение начального периода разработки месторождения обеспечивается при дебитах от 0,75 млн. до 6,5 млн. м3/ сут. Оптимальный дебит, обеспечивающий максимальный резерв температуры, составляет примерно 3 млн м3 /сут.



Температура газа в стволе будет изменяться в зависимости от дебита скважины и диаметра фонтанных труб. Из рисунка 2.6 видно, что при Q = Qопт режим безгидратной эксплуатации обеспечивается при D  145 - 160 мм. С увеличением диаметра труб Q опт сдвигается в сторону больших дебитов (рисунок 2.7). Таким образом, при соответствующем подборе диаметра фонтанных труб и дебита газа можно обеспечить безгидратный режим работы скважин.

Коэффициент теплопередачи (Вт/(м2 *К): 1 - 1,2; 2 - 6; 3 - 12; 4 - 7; 5 – 23; 6 - 29; 7 - геотермический градиент; 8 - равновесная температура образования гидратов; а - е - годы разработки: первый, второй, четвертый, шестой,

1   2   3   4   5   6   7