I условия образования газовых гидратов Влагосодержание природных газов

Главная страница
Контакты

    Главная страница


I условия образования газовых гидратов Влагосодержание природных газов



страница1/7
Дата08.04.2018
Размер1 Mb.


  1   2   3   4   5   6   7


Содержание

I Условия образования газовых гидратов……………………………………3

1.1 Влагосодержание природных газов………………………………………3

1.2 Состав и структура гидратов………………………………………………4

1.3 Условия образования гидратов……………………………………………6

II Места образования гидратов………………………………………………..9

2.2 Образование гидратов в скважинах и способы их устранения………….12

2.3 Образование гидратов в газопроводах……………………………………19

III Расчет расхода ингибитора на УКПГ – 5………………………………….21

1.1 Гидравлический и тепловой расчет шлейфов…………………………….21

1.2 Расчет количества ингибитора…………………………………………….29

I Условия образования газовых гидратов


1.1 Влагосодержание природных газов

Одним из факторов, обусловливающих образование гидратов природных газов, является насыщение последних парами воды. При этом объемная скорость накопления гидратов зависит от скорости изменения влагосодержания газа с изменением давления и температуры. Для определения содержания паров воды в газах используется ряд экспериментальных и аналитических методов. К экспериментальным методам относятся:



  1. визуальное определение точки росы, т. е. температуры, при которой

начинается процесс конденсации паров при заданном давлении;

  1. применение твердых сорбентов;

  2. использование жидких сорбентов с последующим их титрованием;

  3. вымораживание;

5) спектроскопические методы;

6) электрогигрометрический метод.

Наиболее распространенным из них является метод визуального определения точки росы, который дает хорошие результаты при отсутствии конденсации углеводородов. По данному методу точка росы может быть определена с точностью ± 0,1 °С. Однако этот метод не применим при определении точки росы газа, осушенного растворами диэтиленгликоля, из-за конденсации в газе.

Вторым распространенным методом для определения влагосодержания газа является абсорбционный при помощи диэтиленгликоля с последующим титрованием раствора до полного отделения воды, абсорбированной из газового потока. Титрометрическим методом влагосодержание природных газов определяется с точностью до 0,01 г/м3 как при низких, так и при высоких давлениях.

Влагосодержание природных газов, насыщенных парами воды, при нормальных условиях можно определить и по номограмме. На ней нанесена равновесная кривая гидратообразования, ограничивающая определенную область, в которой влагосодержание газов должно определяться из условия равновесия паров воды над гидратами. Определение влагосодержания по данной номограмме дает ошибку, не превышающую 4 %, что вполне допустимо.

Влагосодержание природного газа растёт с повышением температуры и падает с повышением давления. Кроме того, влагосодержание уменьшается с увеличением молекулярного веса, а также с увеличением солености воды.

Коэффициент C применим для любых компонентов природного газа. Он определяется из соотношения C = W/W0,6, г/м3. Поправочный коэффициент Сs определяется из соотношения Cs = Ws/W0,6, г/м3. Здесь W0,6 - влагосодержание природного газа с плотностью по воздуху 0,6, находящегося в контакте с пресной водой; W - влагосодержание природного газа с плотностью по воздуху р; Ws - влагосодержание природного газа, находящегося в контакте с рассолом.

Коэффициент Сs учитывается при определении влагосодержания при-родного газа в пластовых условиях, где газ находится в контакте с минерализо-ванной водой. Если определяют влагосодержание газа при его транспортиров-ке по газопроводам, где газ находится в контакте с конденсирующейся из газа пресной водой, можно считать коэффициент Cs = 1.

Влияние молекулярного веса на влагосодержание газа возрастает с повы-шением температуры. Однако ввиду того, что все природные газы от метана до газов с плотностью 1,0 имеют молекулярный вес между 16 и 30, последний не изменяет влагосодержание природных газов более чем на 3 - 5 %. Присутствие в составе газа СО2 и Н2S увеличивает его влагосодержание, a N2 - уменьшает.

При разработке месторождения пластовое давление уменьшается по мере отбора газа (температура газа в пласте практически остается постоянной в течение всего периода разработки месторождения), а влажность газа увеличивается. При этом влажность газа изменяется в зависимости от давления и температуры при движении газа в системе обустройства. Кроме того, влагосодержание газа изменяется в течение всего периода разработки месторождения с колебанием перепада давления при дросселировании газа. По кривым влагосодержания газа его влагосодержание во всей системе пласт - скважина - газопровод возрастает с падением пластового давления. [1]

1.2 Состав и структура гидратов

Природный газ, насыщенный парами воды, при высоком давлении и при определенной положительной температуре способен образовывать твердые соединения с водой - гидраты.

При разработке большинства газовых и газоконденсатных месторождений возникает проблема борьбы с образованием гидратов. Особое значение этот вопрос приобретает при разработке месторождений Западной Сибири и Крайнего Севера. Низкие пластовые температуры и суровые климатические условия этих районов создают благоприятные условия для образования гидратов не только в скважинах и газопроводах, но и в пластах, в результате чего образуются газогидратные залежи.

Гидраты природных газов представляют собой неустойчивое физико-химическое соединение воды с углеводородами, которое с повышением температуры или при понижении давления разлагается на газ и воду. По внешнему виду это белая кристаллическая масса, похожая на лед или снег.

Гидраты относятся к веществам, в которых молекулы одних компонентов размещены в полостях решетки между узлами ассоциированных молекул другого компонента. Такие соединения обычно называют твердыми растворами внедрения, а иногда соединениями включения.

Молекулы гидратообразователей в полостях между узлами ассоциированных молекул воды гидратной решетки удерживаются с помощью Ван-дер-Ваальсовых сил притяжения. Гидраты образуются в виде двух структур, полости которых заполняются молекулами гидратообразователей частично или полностью (рисунок 3.1). В 1 структуре 46 молекул воды образуют две полости с внутренним диаметром 5,2 * 10 - 10 м и шесть полостей с внутренним диаметром 5,9 *10 -10 м; во II структуре 136 молекул воды образуют восемь больших полостей с внутренним диаметром 6,9*10 - 10 м и шестнадцать малых полостей с внутренним диаметром 4,8*10 - 10 м.



При заполнении восьми полостей гидратной решетки состав гидратов структуры 1 выражается формулой 8M - 46Н2О или М - 5,75Н2О, где М - гидратообразователь. Если заполняются только большие полости, формула будет иметь вид 6М - 46Н2О или М - 7,67Н2О. При заполнении восьми полостей гидратной решетки состав гидратов структуры II выражается формулой 8М136Н2О или М17Н2О.

а - вида I; б - вида II

Рисунок 1.1 - Структура образования гидратов
Формулы гидратов компонентов природных газов: СН4*6Н2О;С2Н6* 8Н2О; С3Н8*17Н2О; i - С4Н10*17Н2О;Н2S*6Н2О;N2*6Н2О;СО2*6Н2О. Эти формулы гидратов газов соответствуют идеальным условиям, т. е. таким условиям, при которых все большие и малые полости гидратной решетки заполняются на 100%. На практике встречаются смешанные гидраты, состоящие из 1, II структур.

1.3 Условия образования гидратов

Представление об условиях образования гидратов дает фазовая диаграмма гетерогенного равновесия, построенная для систем М - Н20. В точке С одновременно существуют четыре фазы (I, II, III, IV): газообразный гидратообразователь, жидкий раствор гидратообразователя в воде, раствор воды в гидратообразователе и гидрат. В точке пересечения кривых 1 и 2, соответствующей инвариантной системе, нельзя изменить температуру, давление или состав системы без того, чтобы не исчезла одна из фаз. При всех температурах выше соответствующего значения в точке С гидрат не может существовать, как бы ни было велико давление. Поэтому точка С рассматривается как критическая точка образования гидратов. В точке пересечения кривых 2 и 3 (точка В) появляется вторая инвариантная точка, в которой существуют газообразный гидратообразователь, жидкий раствор гидратообразователя в воде, гидрат и лед.

Из этой диаграммы следует, что в системе M - Н2О возможно образование гидратов по следующим процессам:

Мг + т (Н2О)ж  Мт(Н2О)т ;

Мр + т (Н2О)т  Мт (Н2О)т;

Mж + т (Н2О)ж Мт (Н2О)т;

Мтв+ т (Н2О)т  Мт (Н2О)т.

Здесь Mг, Мж, Мт - условное обозначение гидратообразователя соответ-ственно газообразного, жидкого и твердого; (H2О)ж, (Н2О)т - молекулы соответ-ственно жидкой и твердом (лед) воды; т - число молекул воды в составе гидрата.

Если вода переохлажденная, упругость диссоциации гидрата меньше, чем при наличии льда. Следовательно, для образования гидратов необходимо, чтобы парциальное давление паров воды над гидратом было выше упругости этих паров в составе гидрата. На изменение температуры образования гидратов влияют: состав гидратообразователя, чистота воды, турбулентность, и т.д. Изменение равновесной температуры гидратообразования также зависит и от скорости охлаждения системы гидратообразователь - вода.

На практике условия образования гидратов определяют с помощью равновесных графиков (рисунок 1.2) или расчетным путем - по константам равновесия и графоаналитическим методом по уравнению Баррера - Стюарта.

Из рисунка 1.2 следует, что чем выше плотность газа, тем больше температура гидратообразования. Однако отметим, что с увеличением плотности газа не всегда повышается температура гидратообразования. Природный газ с небольшой плотностью может образовывать гидраты при более высоких температурах, чем природный газ с повышенной плотностью. Если на увеличение плотности природного газа влияют не гидратообразующие компоненты, то температура его гидратообразования понижается. Если же влияют различные гидратообразующие компоненты, то температура гидратообразования будет выше для того состава газа, в котором преобладают компоненты с большей устойчивостью.

Условия образования гидратов природных газов по константам равновесия определяют по формуле: г = у/К, где z, у - молярная доля компонента соответственно в составе гидрата и газовой фазы; К - константа равновесия.

Условия образования гидратов природных газов по константам равновесия определяют по формуле: г = у/К, где z, у - молярная доля компонента соответственно в составе гидрата и газовой фазы; К - константа равновесия.



Рисунок 1.2 - Диаграмма фазового состояния гидратов различной относительной плотности



Рисунок 1.3 - Равновесные кривые образования гидратов природных газов в зависимости от температуры и давления

  1   2   3   4   5   6   7